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T he answers to important questions in urban economics depend on the
density of population, not the size of population. In particular, positive
production or residential externalities, as well as negative externalities

such as congestion, are typically modeled as a function of density (Chatterjee
and Carlino 2001, Lucas and Rossi-Hansberg 2002). The speed with which
new knowledge and production techniques propagate, the gain in property
values from the construction of urban public works, and the level of labor
productivity are all affected by density (Carlino, Chatterjee, and Hunt 2006,
Ciccone and Hall 1996). Nonetheless, properties of the distribution of urban
population size have been studied far more than properties of the urban density
distribution.

Chatterjee and Carlino (2001) offer an insightful example as to why den-
sity can be more important than population size. They note that though
Nebraska and San Francisco have the same population, urban interactions
occur far less frequently in Nebraska because of its much larger area. Though
the differences in the area of various cities are not quite so stark, there are
meaningful heterogeneities in city densities. Given the importance of urban
density, the stylized facts presented in the article ultimately require explana-
tions such as those given for the evolution of city population.

This article makes two major contributions concerning urban density.
First, we construct an electronic database containing land area, population,
and urban density for every city with population greater than 25,000 in the
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United States. Second, we document a number of stylized facts about the
urban density distribution by constructing nonparametric estimates of the dis-
tribution of city densities over time and across regions.

We compile data for each decade from 1940 to 2000; by 2000, 1,507
cities meet the 25,000 threshold. In addition, we include those statistics for
every “urbanized area” in the United States, decennially from 1950 to 2000.
Though we also present data on Metropolitan Statistical Area (MSA) density
evolution from 1950 to 1980, this definition of a city can be problematic for
work with densities. A discussion of the inherent problems with using MSA
data is found in Section 1. To the best of our knowledge, these data have not
been previously collected in an electronic format.

Our findings document that the distribution of city densities in the United
States has shifted leftward since 1940; that is, cities are becoming less dense.
This shift is not confined to any particular decade. It is evident across regions,
and it is driven both by new cities incorporating with lower densities, and
by old cities adding land faster than they add population. The shift is seen
among several different definitions of cities. A particularly surprising result
is that “legal cities,” defined in this article as regions controlled by a local
government, have greatly decreased in density during the period studied. That
is, since 1940, local governments have been annexing territory fast enough to
counteract the increase in urban population. Annexation is the only way that
cities can simultaneously have increasing population, which is true of the vast
majority of cities in our sample, and yet still have decreasing density.

This article is organized as follows. Section 1 describes how our database
was constructed, and also discusses which definition of city is most appropriate
in different contexts. Section 2 discusses our use of nonparametric techniques
to estimate the distribution of urban density. Section 3 presents our results
and discusses why cities might be decreasing in density. Section 4 concludes.

1. DATA

What is a city? There are at least three well-defined concepts of a city bound-
ary in the United States that a researcher might use: the legal boundary of
the city, the boundary of the built-up, urban region around a central city (an
“urbanized area”), and the boundary of a census-defined Metropolitan Sta-
tistical Area (MSA). The legal boundary of a city is perhaps most relevant
when investigating the area that state and local governments believe can be
covered effectively with a single government. Legal boundaries also have
the advantage of a consistent definition over the period studied; this is not
completely true for urbanized areas, and even less true for MSAs. Urbanized
areas parallel nicely with an economist’s mental image of an agglomeration,
as they include the built-up suburban areas around a central city. MSAs,
though commonly used in the population literature, offer a much vaguer in-
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Table 1 Three Definitions of a City

Legal City The region controlled by a local government or a
similar unincorporated region (CDP).
Defined by local and state governments.

Urbanized Area A region incorporating a central city plus surrounding
towns and cities meeting a density requirement.
Defined by the U.S. Census Bureau.

MSA A region incorporating a central city, the county
containing that city, and surrounding counties meeting a
requirement on the percentage of workers commuting to
the center.
Defined by the U.S. Census Bureau.

terpretation. Figure 1 displays the city, urbanized area, and MSA boundaries
for Richmond, Virginia, and Las Vegas, Nevada, in the year 2000.

Our database of legal cities is constructed from the decennial U.S. Bureau
of the Census Number of Inhabitants, which is published two to three years
after each census is taken. Population and land area for every U.S. “place” with
a population greater than 2,500 are listed. Places include cities, towns, vil-
lages, urban townships, and census-designated places (CDPs). Cities, towns,
and townships are legally defined places containing some form of local gov-
ernment, while a census-designated place (called an “unincorporated place”
before 1980) refers to unincorporated areas with a “settled concentration of
population.” Some of these CDPs can be quite large; for instance, unincorpo-
rated Metairie, Louisiana has a population of nearly 150,000 in 2000. Though
CDPs do not represent any legal entity, they are nonetheless defined in line with
settlement patterns determined after census consultation with state and local
officials, and are similar in size and density to incorporated cities.1 Including
CDPs in our database, and not simply incorporated cities, is particularly im-
portant as some states only have CDPs (such as Hawaii), and “towns” in eight
states, including all of New England, are only counted as a place when they
appear as a CDP.

From this list, we selected every place (including CDPs) with a population
greater than 25,000 for each census from 1940 to 2000. There are 412 places
in 1940 and 1,507 places in 2000 that meet this restriction. Each place was
coded into one of nine geographical regions in line with the standard census
region definition.2 We also labeled each place as either “new” or “old.” An

1 1980 Census of Population: Number of Inhabitants. “Appendix A–Area Classification.” U.S.
Department of Commerce, 1983. Note that CDPs did not appear in the 1940 Census.

2 “Census Regions and Divisions of the United States.” Available online at
http://www.census.gov/geo/www/us regdiv.pdf.
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Figure 1 A Graphic Representation of City Definitions
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old place is a place that had a population greater than 25,000 in 1940 and still
has a population greater than 25,000 in 2000. A new place is one that had a
population less than 25,000 or did not exist at all in 1940, yet has a population
greater than 25,000 in 2000. There are some places which had a population
greater than 25,000 in 1940 but less than 25,000 in 2000 (for instance, a
number of Rust Belt cities with declining populations); we considered these
places neither new or old. Delineating places in this manner allows us to
investigate whether the leftward shift of the distribution of U.S. cities was
driven by newly founded cities having a larger area, or by old cities annexing
area faster than their population increases.

In addition to legal cities, we also construct a series of urbanized areas
from the Number of Inhabitants publication. Beginning in 1950, the U.S. Cen-
sus defined urbanized areas as places with a population of 50,000 or more,
meeting a minimum density requirement, plus an “urban fringe” consisting
of places roughly contiguous with the central city meeting a small population
requirement; as such, urbanized areas are defined in a similar way as ag-
glomerations in many economic models. Aside from 1960, when the density
requirement for central cities was lowered from approximately 2,000 people
per square mile to 1,000 per square mile, changes in the definition of an ur-
banized area have been minor.3 Our database includes each urbanized area
from 1950 to 2000; there were 157 such areas in 1950 and 452 in 2000.

Much of the literature on city population uses data on Metropolitan Sta-
tistical Areas (MSAs). An MSA is defined as a central urban city, the county
containing that city, and outlying counties that meet certain requirements con-
cerning population density and the number of residents who commute to the
central city for work.4 We believe there are a number of reasons that this data
can be problematic for investigating city density. First, it is difficult to get
consistent data on metro areas. Before 1950, they were not defined at all,
though Bogue (1953) constructed a series of MSA populations for 1900–1940
by adding up the population within the area of each MSA as defined in 1950.
Because, by definition, Bogue holds MSA area constant for 1900–1950, this
data set would not pick up any changes in density caused by the changing
area of a city over time. Furthermore, there was a significant change in how
MSAs are defined in 1983, with the addition of the “Consolidated Metropoli-
tan Statistical Area” (CMSA). Because of this, MSAs between 1980 and 1990
are not comparable. Dobkins and Ioannides (2000) construct MSAs for 1990
using the 1980 definition, but no such series has been constructed for 2000.

Second, the delineation of MSAs is highly dependent on county defini-
tions. Particularly in the West, counties are often much larger than in the

3 See the Geographic Areas Reference Manual, U.S. Bureau of the Census, chap. 12. Avail-
able online at: http://www.census.gov/geo/www/garm.html.

4 In New England, the town, rather than the county, is the relevant area.



346 Federal Reserve Bank of Richmond Economic Quarterly

Midwest and the East. For instance, in 1980, the Riverside-San Bernardino-
Ontario, California MSA had an area of 27,279 square miles and a population
density of 57 people per square mile.5 This MSA has an area three times the
size of and a lower population density than Vermont.6 When looking solely
at population, MSAs can still be useful because the population in outlying
rural areas tends to be negligible; this is not the case with area, and therefore
density.

Third, the number of MSAs is problematic in that it truncates the num-
ber of available cities such that only the far right-hand tail of the population
distribution is included. For instance, Dobkins and Ioannides’ (2000) MSA
database includes only 162 cities in 1950, rising to 334 by 1990. For cities
and census-designated places, three to four times as much data can be used.
Eeckhout (2004) notes that the distribution of urban population size is com-
pletely different when using a full data set versus a truncated selection that
includes only MSAs; it seems reasonable to believe that urban density might
be similar in this regard. Further, nonparametric density estimation, as used in
this article, requires a large data set. For completeness, we show in Section 3
that the distribution of densities in MSAs from 1950 to 1980, when the MSA
definition was roughly consistent, follows a similar pattern to that of urbanized
areas and legal cities.

Other than the database used in this article, we know of no other complete
panel data set of urban density for U.S. cities. For 1990 and 2000, a full
listing of places with area and population is available online as part of the
U.S. Census Gazetteer.7 The County and City Data Books, hosted by the
University of Virginia, Geospatial and Statistical Data Center, hold population
and area data for 1930, 1940, 1950, 1960, and 1975; these data were entered
by hand during the 1970s from the same census books we used.8 However,
crosschecking this data with the actual census publications revealed a number
of minor errors, and further indicated that unincorporated places and urban
towns were not included. For some states (for instance, Connecticut and
Maryland), this means that very few places were included in the data set at
all. Our data set rectifies these omissions.

5 The MSA was made up of two counties: Riverside County with an area of 7,214 square
miles, and San Bernardino County with an area of 20,064 square miles.

6 In fact, the entire planet has a land area of around 58 million square miles and a population
of 6.5 billion, giving a density of 112 people per square mile, or twice the density of the Riverside
MSA.

7 The 1990 data can be found at http://www.census.gov/tiger/tms/gazetteer/places.txt. Data for
2000 are available at: http://www.census.gov/tiger/tms/gazetteer/places2k.txt.

8 County and City Data Books. University of Virginia, Geospatial and Statistical Data Center.
Available online at: http://fisher.lib.virginia.edu/collections/stats/ccdb/.
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2. NONPARAMETRIC ESTIMATION

With these density data, we estimate changes in the probability density func-
tion (pdf ) over time for each definition of a city in order to examine, for
instance, how the distribution of urban densities is changing over time. We
use nonparametric techniques, rather than parametric estimation, because non-
parametric estimators make no underlying assumption about the distribution
of the data (for instance, the presence or lack of normality). Assuming, for
instance, an underlying normal distribution might mask evidence of a true
bimodal distribution, and given our lack of priors concerning the distribution
of urban densities, nonparametric estimates offer more flexibility. Potential
pitfalls in nonparametric estimation are the requirement of larger data sets,
and the computational difficulty of calculating pdf estimates with more than
two or three variables;9 however, our data sets are large and our estimated
pdfs are univariate. Nonparametric estimates of a pdf are closely related to
the histogram; a description of this link, and basic nonparametric concepts, is
given in Appendix A.

One frequently used nonparametric pdf estimator is the Rosenblatt-Parzen
estimator,

f̂ (x) = 1

nh

n∑
i=1

K(ψi),

where n is the number of observations, h is a “smoothing factor” to be chosen
below, ψi = x−xi

h
, and K is a nonparametric kernel. The smoothing factor

determines the interval of points around x which are used to compute f̂ (x),
and the kernel determines the manner in which an estimator weighs those
points. For instance, a uniform kernel would weigh all points in the interval
equally.

In practice, the choice of kernel is relatively unimportant. In this article,
we use one of the more common kernels, namely the Gaussian kernel,

K(ψi) = (2π)−.5e−
ψ2
i

2 .

This kernel uses a weighted average of all observations, with weights declining
in the distance of each observation from xi .

The choice of bandwidth h, on the other hand, can be important, and is
often chosen so as to minimize an error function of bias and variance. Given a
set of assumptions about the nature of f (x), the Rosenblatt-Parzen estimator

9 Nonparametric estimates converge to their true values at a rate slower than
√
n.
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f̂ (x) is such that10

Bias = h2

2
[
∫
ψ2K(ψ)dψ]f ′′(x)+O(h2) (1)

and

Variance = 1

nh
f (x)

∫
K2(ψ)dψ +O(

1

nh
). (2)

A low bandwidth, h, gives low bias but high variance, whereas a high h will
give high bias but low variance. That is, choosing too small of a value for h
will cause the estimated density to lack smoothness since not enough sample
points will be used to calculate each f̂ (xi), whereas too high a value for hwill
smooth out even relevant bumps such as the trough in a bimodal distribution.
A description of the assumptions necessary for our bias and variance formulas
can be found in Appendix B.

The integrated mean squared error is defined as∫
[Bias(f̂ (x))2 + V(f̂ (x))]dx. (3)

This function simultaneously accounts for bias and variance. It is analogous
to the conventional mean squared error in a parametric estimation. When h
is chosen to minimize (3) after substituting for the bias and variance using
expressions (1) and (2) respectively, we obtain

h = cn− 1
5 where c = [

∫
K2(ψ)dψ

[
∫
ψ2K(ψ)dψ]2

∫
(f ′′(x))2dx

]
1
5 .

Sincef (x) is unknown, and the formula forh involves knowing the truef ′′(x),
no more can be said abouthwithout making some assumptions about the nature
of f (x). For example, if f (x) ∼ N(μ, σ 2), then c = 1.06σ̂ , and thereforeh =
1.06σ̂ n− 1

5 exactly.11 This formula is called Silverman’s Rule of Thumb, and
works very well for data that is approximately normally distributed (Silverman
1986). Silverman notes that this rule does not necessarily work well for
bimodal or heavily skewed data, and some of the series in this article (for
instance, city populations) are heavily skewed. In particular, outliers lead to
large increases in the estimated standard deviation, σ̂ , and therefore a very
large value for h. Consequently, this article instead uses Silverman’s more
general specification

h = .9Bn− 1
5

10 If Xn
nk

→ some real number c as n → ∞, then Xn is O(nk). O(A) is the largest order
of magnitude of a sequence of real numbers Xn.

11 Note that this rule does not imply that the nonparametric estimate will look like a para-

metric normal distribution; it merely says that, given data that are roughly normal, 1.06σ̂ n− 1
5 is

the smoothing factor that minimizes both bias and variance.
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given

B = min(σ̂ ,
IQR

1.34
),

where IQR is the interquartile range of sample data. This formula is much
less sensitive to outliers than the Rule of Thumb. In practice, this has shown
to be nearly optimal for somewhat skewed data.

3. RESULTS

Using the kernel and smoothing parameter from the previous section, we can
construct estimates of the pdf of the distribution of population, area, and urban
density in each decade.

Figure 2 shows nonparametric estimations of the distributions of popu-
lation size, area, and density for legal cities as defined in Section 1. Panel C
shows a leftward shift of the distribution of city densities; that is, cities in 2000
are significantly less dense than in 1940. The mean population per square mile
during that period fell from 6,742 to 3,802. This is being driven principally
by an increase in the area of each city; mean area has increased from 19.2
square miles to 35.1 square miles between 1940 and 2000. The distribution
of populations has remained relatively constant during this period.

One might imagine that this shift is being driven only by a subset of cities,
such as rapidly-growing suburban and exurban cities, or cities in the West
where land is less scarce. Hence, we divide cities into “new” and “old,” as
defined in Section 1, as well as categorize each city into one of four regions:
East, South, Midwest, and West. Figure 3 shows that the leftward shift in
distribution is similar among both old and new cities; that is, city density
is decreasing both because existing cities are annexing additional area, and
because new cities have lower initial densities than in the past. The number
of cities that change their legal boundaries in a given decade is surprising; for
instance, between 1990 and 2000, nearly 36 percent of the cities in our data
set added or lost at least one square mile. These changes vary enormously
by state, however, in a state such as Massachusetts, where all of the land has
been divided into towns for decades, there is very little opportunity for a city
to add territory. Alternatively, in a state such as Oregon where the majority
of land is unincorporated, annexation is much more common. Might it then
be the case that the shift in city density is specific to the Midwest and West,
where annexation is frequent?

In fact, the leftward shift in city density does not appear to be a regional
phenomenon. Figure 4 shows the distribution of densities in the East, South,
Midwest, and West during the period 1940–2000. Each region showed a simi-
lar decline in density. The full distribution of log density from the Rosenblatt-
Parzen estimator is particularly useful when examining the relatively small
number of cities in each region when compared to a simple table of moments,
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Figure 2 Legal City Area, Population, and Density
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as extreme outliers in the data can result in high skewness. For instance, Juneau,
Alaska, had an area of 2,716 square miles and a population of 30,711 in 2000,
giving a density of approximately 11 people per square mile.

The trend in density is even clearer if we look at urbanized areas. Ur-
banized areas can be reasonably thought of as urban agglomerations; they
represent the built-up area surrounding a central city. Figure 5 shows the es-
timated distribution of urbanized areas in 1960, 1980, and 2000. As in the
case of legal cities, there has been a clear decrease in the density of urbanized
areas during this period. Because the boundaries of urbanized areas and le-
gal cities are quite different, it is rather striking that, under both definitions,
the decrease in density has been so evident. That is, cities have not simply
expanded into a mass of lower-density suburbs, but the individual cities and
suburbs themselves have decreased in density, primarily by annexing land.

Finally, we consider the density of Metropolitan StatisticalAreas.As noted
in Section 1, there are only consistently defined MSA data available for the
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Figure 3 Distributions of New and Old Cities
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period 1950–1980. Furthermore, a decrease in the distribution of MSA density
might simply reflect the increase in the number of MSAs in states with large
counties, since each MSA by definition includes its own county. The urban
economics literature concerning population size, however, often uses MSAs.
Figure 6 shows that the distribution of MSA population density also appears to
be shifting leftward in the same manner as legal cities and urbanized areas, but
again, it is hazardous to give any interpretation to this shift. The definitional
advantages and large data sample size for urbanized areas and legal cities
potentially makes them preferable to MSAs for future work concerning urban
density.

The importance of these shifts in urban density is underscored by the
long-understood link between density and economic prosperity. Lucas (1988)
cites approvingly Jane Jacobs’ contention that dense cities, not simply cities,
are the economic “nucleus of an atom,” the central building block of develop-
ment through their role in spurring human capital transfers. Ciccone and Hall
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Figure 4 Distributions of Urban Density by Region
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(1996), using county-level data, find that a doubling of employment density in
a county increases labor productivity by 6 percent. In addition to knowledge
transfer, agglomerations arise in order to facilitate effective matches between
employer and employee and to take advantage of external economies of scale
such as a common deepwater port.

Measuring the nature of local knowledge transfer, and in particular whether
the relevant area has expanded as transportation and communication technolo-
gies have fallen, is difficult. Jaffe, Trajtenberg, and Henderson (1993) find ev-
idence that, given the existing distribution of industries and research activity,
new patents tend to cite existing patents from the same state and MSA at an
unexpectedly high level. Using data on the urbanized portion of a metropolitan
area, Carlino, Chatterjee, and Hunt (2006) find that patents per capita rise 20
percent as the employment density of a city doubles. They also find that the
benefits of density are diminishing over density, so that cities with employ-
ment densities similar to Philadelphia and Baltimore, around 2,100 jobs per
square mile, are optimal.

Given the economic benefits of density, the changes in the urban den-
sity distribution presented in this article suggest two questions. First, why
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Figure 5 Distribution of Urbanized Areas
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have agglomeration densities decreased? Second, why have the areas of legal
jurisdictions increased?

Decreased densities in urban areas have been explained by a number of
processes in the literature, including federal mortgage insurance, the Interstate
Highway System, racial tension, and schooling considerations. Mieszkowski
and Mills (1993) counter that these explanations tend to be both unique to the
United States and are phenomena of the postwar period, whereas a decrease
in urban density began as early as 1900 and has occurred across the developed
world. Two theories remain.

First, the decreased transportation costs brought about by the automobile
and the streetcar has allowed congestion in central cities to be avoided by firms
and consumers. Glaeser and Kahn (2003) point out that the automobile also
has a supply-side effect in that it allows factories and other places of work
to decentralize by eliminating the economies of scale seen with barges and
railroads; the rail industry was three times larger than trucking in 1947, but
trucks now carry 86 percent of all commodities in the United States. Whereas
the wealthy in the nineteenth century might have preferred to live in the center
of a city while the poor were forced to walk from the outskirts, the modern
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Figure 6 Distribution of MSAs
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well-to-do are less constrained by transport times and, therefore, occupy land
in less-dense suburban and exurban cities.

Rossi-Hansberg, Sarte, and Owens (2005) present a model in which firms
set up non-integrated operations such that managers work in cities in order
to take advantage of knowledge transfer externalities but production workers
tend to work at the periphery of a city where land costs are lower. They then
show that, as city population grows, the internal structure of cities changes
along a number of dimensions that are consistent with the data.

A second theory, not entirely independent from the first, posits that cities
have become less dense because of a desire for homogenization. When a large
group with relatively homogenous preferences for tax rates and school quality
is able to occupy its own jurisdiction, it can use land-use controls to segregate
itself from potential residents with a different set of preferences. Mieszkowski
and Mills (1993) argue that land-use restrictions have become more stringent
in the postwar era, and that segregation into income-homogenous areas may
be contributing to decreased densities.

There are fewer existent theories about why legal jurisdictions, at a given
population level, have increased in area. Glaeser and Kahn (2003) note that
effective land use requires larger jurisdictions as transportation costs fall. That
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is, if a city wished to limit sprawl in an era with high transportation costs, it
could enact effective land-use regulations within small city boundaries. In
an era with low transportation costs, however, such a regulation would sim-
ply push residents into another bedroom community and have no effect on
sprawl or traffic. The growing number of regional land-use planning commis-
sions, such as Portland’s Metropolitan Service District and Atlanta’s Regional
Commission, speak to this trend (Song and Knaap 2004).

Austin (1999) discusses reasons why cities may want to annex territory,
including controlling development on the urban fringe, increasing the tax base,
lowering the cost of municipal services, lowering municipal service costs by
exploiting returns to scale, or altering the characteristics of the city, such as
decreasing the minority proportion of population. External areas may wish
to be annexed because of urban economies of scale, and because urban areas
offer benefits such as cheaper bond issuance than suburban and unincorporated
areas. Austin finds evidence that cities annex for both political and economic
reasons, but that increasing the tax base does not appear to be a relevant
factor, perhaps because of the growing ability of high-wealth areas to avoid
annexation by poorer cities.

4. CONCLUDING REMARKS

This article provides two novel contributions. First, it constructs an elec-
tronic data set of urban densities in the United States during the previous
seven decades for three different definitions of a city. Second, it applies non-
parametric techniques to estimate the distribution of those densities, and finds
that there has been a stark decrease in density during the period studied. This
deconcentration has been occurring continuously since at least 1940, in every
area of the United States, and among both new and old cities. This result
is striking; increasing population and increasing area across cities do not, by
themselves, tell us what will happen to density.

Falling urban densities suggest that, over the past seven decades, the pro-
ductivity benefits of dense cities have been weakening. Decreasing costs
of transportation and communication have allowed firms to move production
workers out of high-rent areas, and have allowed residents to move away from
downtowns. It is unclear what effect these changes in the urban landscape
will have on knowledge accumulation and growth in the future. For instance,
it is conceivable that the productivity loss from ever-decreasing spatial density
might be counteracted by decreased long-range communication costs. Under-
standing the broad properties of urban density in modern economies is merely
a necessary first step in understanding how these changing properties of cities
will affect the broader economy.
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APPENDIX A: NONPARAMETRIC ESTIMATORS

Classical density estimation assumes a parametric form for a data set and uses
sample data to estimate those parameters. For instance, if an underlying
process is assumed to generate normal data, the estimated density is

1

σ
√

2π
e

−(x−u)2
2σ2 ,

where σ and μ are the sample standard deviation and mean.
Nonparametric density estimation, on the other hand, allows a researcher

to estimate a complete density function from sample data, and therefore esti-
mate each moment of that data, without assuming any underlying functional
form. For instance, if a given distribution is bimodal, estimating moments
under the assumption of normally distributed data will be misleading. Know-
ing the full distribution of data also makes clear what stylized facts need to be
explained in theory; if the data were skewed heavily to the right and suffered
from leptokurtosis, a theory explaining that data should be able to replicate
these properties. Nonparametric estimation generally requires a larger data
set than parametric estimation to achieve consistency, but is becoming more
common in the literature. Given that our city data set is large, we use non-
parametric techniques in this article. A brief introduction to these techniques
can be found in Greene (2003), while a more complete treatment is found in
Pagan and Ullah (1999).

At its core, a nonparametric density estimate is simply a smoothed his-
togram. Therefore, the nonparametric estimator can be motivated by begin-
ning with a histogram. In a histogram, the full range of n sample values
is partitioned into non-overlapping bins of equal width h. Each bin has a
height equal to the number of sample observations within the range of that
bin divided by the total number of observations. Given an indicator function
I(A), defined as equal to 1 if the statement A is true, and 0 if the statement A
is false, the height of a bin centered at some point x0, with width h, is

H(x0) = 1

n

n∑
i=1

I(x0 − h

2
< xi ≤ x0 + h

2
).

That is, we are simply counting the number of sample observations in each
bin of width h, and dividing that frequency by the sample size; the resulting
height of each bin is the relative frequency. If there are 40 observations,
of which 10 are in the bin (1,2], with h = 1, then the histogram has height
H(1.5) = .25 for all x in (1,2].

This concept can be extended by computing a “local” histogram for each
point x in the range (xmin − h

2 , xmax + h
2 ], where xmin and xmax are the minimum



K. A. Bryan, B. D. Minton, and P. D. Sarte: Urban Density 357

and maximum values in the sample data.12 In the histogram above, we
computed H(x0) for only h points in the range; x0 was required to be the
midpoint of a bin. The local histogram will instead calculate f̂ (x) for every
x in (xmin − h

2 , xmax + h
2 ), where f̂ (x) evaluated at a given point x0 is equal

to the number of sample observations within (x0 − h
2 , x0 + h

2 ), divided by n
to give a frequency.13 That is,

f̂ (x) = 1

n

n∑
i=1

I(x − h

2
< xi < x + h

2
)

= 1

n

n∑
i=1

I(|x − xi

h
| < 1

2
)

= 1

n

n∑
i=1

I(|ψ(xi)| < 1

2
),

where ψ(xi) = x−xi
h
. f̂ (x) is a proper density function if, first, it is greater

than or equal to zero for all x, which is guaranteed since the indicator function
is always either 0 or 1, and second, if

∫∞
−∞ f̂ (x)dx = 1. Dividing f̂ (x) by h

ensures that the function integrates to one. To see this, observe first that∫ ∞

−∞
I(|ψ(xi)| < 1

2
)dψ =

∫ 1
2

−−1
2

I(|ψ(xi)| < 1

2
)dψ =

∫ 1
2

− 1
2

dψ = 1.

In addition, since ψ(xi) = x−xi
h
,

1

h

∫ ∞

−∞
f̂ (x)dx = 1

nh

n∑
i=1

∫ ∞

−∞
I(|x − xi

h
| < 1

2
)dx

= 1

n

n∑
i=1

∫ ∞

−∞
I(|x − xi

h
| < 1

2
)dψ

= 1.

While local histograms certainly provide a nonparametric estimate of den-
sity, and are smoother than proper histograms, they are still discontinuous. It
seems sensible, then, to attempt to smooth the histogram. This is done by

12 The local histogram f̂ (x) must be computed for (xmin − h
2 , xmax + h

2 ] and not simply

for (xmin, xmax], because f̂ (x) > 0 for points outside of (xmin, xmax]. For instance, if h = 1
and (xmin, xmax] = (0, 10], f̂ (10.4) will be greater than zero because it will count the sample
observation x0 = 10.

13 In practice, f̂ (x) can only be computed for a finite number of points. The distributions we
display in Section 5 have been computed at 1,000 points evenly divided on the range (xmin, xmax).
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replacing the indicator function in

f̂ (x) = 1

nh

n∑
i=1

I(|x − xi

h
| < 1

2
)

with another function called a kernel, K(ψ), such that f̂ (x) ≥ 0, integrates
to one and is smooth. An estimator of the form

f̂ (x) = 1

nh

n∑
i=1

K(ψi), where ψi = x − xi

h
,

is a Rosenblatt-Parzen kernel estimator, and the resulting function f̂ (x) de-
pends on the choice of h, called a bandwidth or smoothing parameter, and
the choice of kernel. A “good” density estimate will have low bias (that is,
E(f̂ (x))−f (x), where f (x) is the true density of the data) and low variance.

APPENDIX B: ROSENBLATT-PARZEN BIAS
AND VARIANCE

Bias and variance of a nonparametric estimator can be calculated given the
following four assumptions:

1) The sample observations are i.i.d.
2) The kernel is symmetric around zero and satisfies

∫∞
−∞K(ψ)dψ =

1,
∫∞
−∞ ψ2K(ψ)dψ 	= 0, and

∫∞
−∞K2(ψ)dψ < ∞.

3) The second-order derivatives of f̂ are continuous and bounded
around x, and

4) h → 0 and nh → ∞ as n → ∞.

It can be shown that the Rosenblatt-Parzen estimator f̂ (x) has

Bias = h2

2
[
∫
ψ2K(ψ)dψ]f ′′(x)+O(h2)

and

Variance = 1

nh
f (x)

∫
K2(ψ)dψ +O(

1

nh
).

The integrated mean squared error (MISE) is defined as∫
[Bias(f̂ (x))2 + V(f̂ (x))]dx.

Substituting the formulas for bias and variance, and ignoring the higher
order terms, O(h2) and O( 1

nh
), respectively, gives the asymptotic integrated
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mean squared error (AMISE):

h4

4
[
∫
ψ2K(ψ)dψ]2

∫
(f ′′(x))2dx + 1

nh

∫
f (x)dx

∫
K2(ψ)dψ

= h4

4
[
∫
ψ2K(ψ)dψ]2

∫
(f ′′(x))2dx + 1

nh

∫
K2(ψ)dψ.

Differentiating with respect to h and setting the result equal to zero, we
have

h3[
∫
ψ2K(ψ)dψ]2

∫
(f ′′(x))2dx − 1

nh2

∫
K2(ψ)dψ = 0

or

h = cn− 1
5 , where c = [

∫
K2(ψ)dψ

[
∫
ψ2K(ψ)dψ]2

∫
(f ′′(x))2dx

]
1
5 .
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