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Abstract

We estimate a panel model with endogenously time-varying parameters for COVID-

19 cases and deaths in U.S. states. The functional form for infections incorporates

important features of epidemiological models but is flexibly parameterized to capture

different trajectories of the pandemic. Daily deaths are modeled as a spike-and-slab

regression on lagged cases. Our Bayesian estimation reveals that social distancing and

testing have significant effects on the parameters. For example, a 10 percentage point

increase in the positive test rate is associated with a 2 percentage point increase in the

death rate among reported cases. The model forecasts perform well, even relative to

models from epidemiology and statistics.

JEL Classification: C32, C51

Key Words: Bayesian Estimation, Panel, Time-Varying Parameters

∗We thank seminar participants at the Federal Reserve Bank of Richmond for helpful comments. James
Geary and James Lee provided exceptional research assistance. This research was supported in part through
computational resources provided by the Big-Tex High Performance Computing Group at the Federal Reserve
Bank of Dallas. The views expressed herein are those of the authors and not necessarily those of the Federal
Reserve Bank of Richmond or the Federal Reserve System.
†Research Department, P.O. Box 27622, Richmond, VA 23261. Email: paul.ho@rich.frb.org.
‡Research Department, P.O. Box 27622, Richmond, VA 23261. Email: thomas.lubik@rich.frb.org.
§Wylie Hall, 100 South Woodlawn Avenue, Bloomington, IN 47405. Email: matthesc@iu.edu.

1



1 Introduction

A new form of coronavirus, SARS-CoV-2, which causes the respiratory disease COVID-19,

appeared in the U.S. in January 2020.1 Since then, the U.S. has seen over 5 million cases and

170,000 deaths as of mid-August.2 Any policy response to the pandemic crucially depends

on understanding how the virus spreads, how the disease evolves over time, what its effects

on mortality rates are, and how factors such as increased testing and measures such as social

distancing affect outcomes. We contribute to this effort from a statistical perspective that

pays heed to prior epidemiological research.

To that end, we develop and estimate a time series model for the number of cases and the

number of deaths in U.S. states that has three key features: (i) it exploits the panel dimension

of the data without forcing dynamics to be the same across states, (ii) it is a statistical model

that, while using some insights from epidemiological models, is more flexible than common

models in epidemiology, and (iii) it features time variation in parameters tied directly to

fluctuations in observable predictors to account for the fact that as the pandemic grew,

citizens and governments changed their behavior.3 The model produces accurate forecasts for

COVID-19 cases and deaths in the U.S., outperforming many competing models’ forecasts

for new and cumulative deaths. Our estimates show that increased social distancing and

testing are associated with lower numbers of cases, but this association does not hold in all

states. In addition, increased testing is associated with lower death rates among reported

cases. We estimate the model using Bayesian methods, which allows us to quantify the

uncertainty in our forecasts and estimates explicitly.

Our model for the number of infections is based on the observation that the time path of

infections during an epidemic follows a typical pattern. When a pathogen enters a population

that is susceptible to infection, the number of infected cases is initially low. However, the

growth rate of new infections is high and tends to rise sharply at an exponential rate since

each infected person creates a chain of new infections. At some point, however, the pathogen

runs out of susceptible hosts because they are already infected, immune, or simply not

physically present because of health policies such as social distancing. At this inflection

point, the growth rate of infections falls until it eventually declines to zero. We replicate

these broad patterns of an epidemic by specifying a flexible functional form that describes

the path of infections over time as depending on the current and the lagged levels of the

number of infections. In contrast to theoretical epidemiological models, our specification

1https://en.wikipedia.org/wiki/COVID-19_pandemic
2https://coronavirus.jhu.edu
3The usefulness of time-varying parameter models during times of policy changes was first noted by

Robert Lucas in his original work on the Lucas Critique (Lucas (1976)).
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has more leeway to go where the data tell it to and is not constrained by precise theoretical

relationships that may be specified incorrectly.

Since deaths from COVID-19 fundamentally arise from infections, we model the number

of deaths as depending on lagged cases. In particular, we use a spike-and-slab regression

model (Mitchell and Beauchamp (1988); Ishwaran et al. (2005)), in which the number of

deaths on a given day in a particular state depends on the lagged number of daily new cases

in that state. Due to the long lag between the time COVID-19 patients test positive and

the time they may die, our specification includes 35 lags, introducing a large number of

coefficients relative to the length of the sample period. The spike-and-slab structure shrinks

the regression coefficients in order to improve forecast performance.

We adapt our empirical specification to account for the fact that over time and across

states, there has been heterogeneity in how the pandemic has evolved and how states have

responded. First, we introduce endogenous time-varying parameters (TVP). The parameters

for the model of infections depend on social distancing and testing, and the death rate

depends on testing. We measure social distancing using geolocation data from 16 to 20

million mobile devices and measure the intensity of testing using the ratio of infections to

tests conducted. The model thus captures how these predictors alter the predicted path of

infections and deaths while providing additional flexibility to match different trajectories in a

way that is tightly disciplined by data. Second, we utilize the panel structure of the data. In

particular, our estimation allows the data to determine the correlation in parameters across

states and imposes that social distancing and testing have the same effect on parameters in

all states. Exploiting the panel structure sharpens estimates and forecasts in the presence

of a short sample period by leveraging on data from all states to inform the estimates for a

given individual state.

The model forecasts from May and June at horizons of up to 4 weeks are generally

corroborated by the data. In particular, we check the empirical frequency at which the data

realizations fall below various quantiles of our model forecasts. The forecasts match the

empirical realizations for daily new cases except during the sharp rise at the end of June and

start of July. However, by mid-July, the parameter estimates update and produce forecasts

that largely match the data in the second half of July. The density forecasts for daily new

deaths also match the empirical realizations well, especially at the upper quantiles. Our

forecasts for new and cumulative deaths perform favorably relative to a repository of models

from leading teams of epidemiologists and statisticians.

The endogenous TVP allow us to consider how social distancing and testing drive the

model-implied paths for cases and deaths. Due to the nonlinearity of our model, we find

that the effect of increased social distancing and testing on the predicted number of cases
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differs across states even though the parameters determining this dependence are fixed across

states. For instance, under the median estimates for Texas, quantitatively plausible increases

in social distancing or testing are associated with a reduction in the number of cases by up to

50%. Under the median estimates for New York, the peak number of cases is early and sharp,

and neither social distancing nor testing substantially changes the model-implied path for

cases. We also find that more testing is associated with a lower death rate since the reported

infections are likely to include more asymptomatic or mild cases.

Epidemiologists have long studied the spread of infectious diseases, using both increas-

ingly complex theoretical models and also more purely empirical frameworks. We contribute

to the latter by utilizing the toolkit prevalent in the analysis of economic data. In that

respect, our work is similar to Harvey and Kattuman (2020), Li and Linton (2020), and Liu

et al. (2020), who also use statistical models to forecast the pandemic. Our work is closest

to Liu et al. (2020), who similarly use a panel structure. They use a linear time-trend model

that allows for an exogenous break, whereas our model is a nonlinear autoregressive model

whose parameters are connected to observable predictors. Our functional form shares simi-

larities with the generalized logistic curve used by Harvey and Kattuman (2020) to model the

number of cases. Both are flexible models for monotone progress from an initial condition

toward a saturation point. In contrast, Li and Linton (2020) use a polynomial time trend

for the logarithm of cases that is less flexible. Both Harvey and Kattuman (2020) and Li

and Linton (2020) focus on locality-by-locality estimation.

Our paper also connects with recent work that enriches structural models from epidemiol-

ogy, primarily the so-called Susceptible-Infected-Recovered (SIR) framework. The structural

nature of the SIR model allows for the analysis of policy and counterfactual scenarios (e.g.,

Atkeson (2020); Fernández-Villaverde and Jones (2020); Hornstein (2020)). A hybrid ap-

proach is taken by Atkeson et al. (2020), who fit data on daily deaths to a mixture of

Weibull functions, then use the model-implied mixture of Weibulls to obtain a time-varying

reproduction rate for an SIR model. However, Koroloev (2020) and Kopecky and Zha (2020)

highlight identification issues in SIR frameworks, which pose a challenge to accurate fore-

casting and quantification of uncertainty.

With the growing data on the COVID-19 pandemic, numerous attempts have been made

to study the connection between different variables and the spread of the disease. One ap-

proach is to incorporate the SIR model into a choice-theoretic framework (e.g., Eichenbaum

et al. (2020); Farboodi et al. (2020); Bognanni et al. (2020)) in order to model the feedback

between individual or policy decisions and the transmission of the virus. Our reduced form

approach seeks to minimize assumptions and gives the data a greater role in informing the

researcher. A second approach is to estimate a SIR model with exogenous TVP (e.g., Ar-
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royo Marioli et al. (2020); Buckman et al. (2020); Dandekar and Barbastathis (2020)), then

check the correlation of the parameters with various observables, such as social distancing

or quarantine measures, ex post. In contrast, we estimate the dependence of parameters

on these predictors jointly with the rest of the model. Finally, numerous papers have used

microeconometric methods that make use of differences across localities (e.g., Almagro and

Orane-Hutchinson (2020); Desmet and Wacziarg (2020); Glaeser et al. (2020)). By incor-

porating the panel structure, we similarly utilize variation across both states and time to

determine how social distancing and testing affect the path of the virus.

The paper is structured as follows. In Section 2, we introduce our model specification

which we use to capture the evolution of infections and deaths over the course of an epidemic.

We describe the data and estimation procedure in Section 3 and present the results in Section

4. Section 5 concludes.

2 A Panel Model for Estimating and Forecasting Pan-

demics

We now introduce and specify our empirical modeling framework for estimating and fore-

casting infections and deaths over the course of a pandemic. We formally introduce the

model setup before highlighting the distinctive features of our specifications.

2.1 Model Setup

We begin by modeling the number of infections independently since it is the key variable in

any theoretical or empirical model that studies the evolution of an epidemic. The number

of subsequent deaths is a function of the number of infections, which we consequently model

as a function of the lagged number of new cases.

2.1.1 Number of Cases

We specify the following model for the reported number of infections.4 Given states i =

1, ..., N and time periods t = 1, ..., T , denote the cumulative number of reported cases nor-

4We model the number of reported cases directly since it is the most common approach in the literature.
Testing in the U.S. has increased substantially since the onset of the pandemic, which we capture by allowing
the parameters to depend on the positive test rate. Therefore, the estimates and projections should not be
interpreted as capturing the unobserved true number of cases in the population.
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malized by population by Ci,t. We assume that Ci,t follows:

∆ logCi,t = log(1 + γi,t)
φ(Ci,t−1;αi,t, ζi,t, ηi,t)

φ(10−5;αi,t, ζi,t, ηi,t)
exp(uCi,t) (1)

φ(C;α, ζ, η) ≡ exp[−C−α − (ζη − Cη)−2] (2)

uCi,t = ρiu
C
i,t−1 + εCi,t , (3)

where εCi,t ∼ N (0, (1 − ρ2
i )(σ

C
i,t)

2). The normalization by φ(10−5;αi,t, ζi,t, ηi,t) ensures that

when a fraction 10−5 of the population has been infected, the growth rate in the absence of

shocks or time-variation in parameters is γ. The AR(1) processes uCi,t allow for potentially

persistent deviations from the deterministic trend. We assume these shocks are stationary.

In what follows, we describe the role of each of the parameters in giving flexibility to the

model-implied path for number of cases, before describing how the parameters vary across

time and states.

Functional Form. A key feature of the model is the functional form for φ in equation (2)

and the resulting range of trajectories implied by equation (1). We choose φ so that the

model with fixed parameters follows the general pattern of infections in a pandemic, with

an initial sharp increase as the disease spreads, followed by a leveling off and decline due to

public health policies or herd immunity. On the other hand, we ensure that the functional

form is flexible enough to match a wide range of such paths.

Figure 1 plots the trajectories for a range of time-invariant parameter values, illustrating

the role of each parameter. Each path begins with the same initial condition, and each panel

shows the effect of changing one parameter while leaving the rest unchanged. The functional

form allows for different rates of increase and subsequent decrease in the number of new

cases, different peaks, and different asymptotic numbers of cumulative cases. Importantly,

there is no fixed relationship between the different stages of the pandemic, imposing neither

the tight structure of an SIR model nor the symmetry of functional forms such as quadratic

trends.

Identification of the model parameters is based on the growth rate and changes in the

growth rate of infections, with the different parameters associated with distinct phases of the

epidemic. Initially, the rate of growth is approximately exponential. The effect of increasing

α, shown in the top-right panel of Figure 1, is to increase the curvature of the number of

new cases, ∆Ct, in the early phase of the epidemic, which captures the appearance of large

clusters or the effects of social distancing measures. As the stock of susceptible hosts starts

getting smaller, the rise in the growth rate decelerates until it reaches a peak. Afterwards,
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Figure 1: Model-implied daily new cases with time-invariant parameters and no shocks.
Gray lines are identical across all panels. Each panel shows change in model-implied number
of new cases associated with a change in one parameter.

the growth rate of new infections declines.

The parameters η and ζ determine the long-run number of cumulative cases and the

speed at which a population converges to that number, which could depend on factors

such as demographics or policies.5 In particular, the bottom panels of Figure 1 show that

increasing ζ or η leaves the initial path of Ct unchanged but increases the number of new

cases around the peak. While ζ does not affect the overall shape of the trajectory materially,

decreasing η flattens the peak and leads to a slower decline in the number of cases.

Panel Structure and Time-Varying Parameters. Denote a generic parameter by

θ ∈ {γ, α, ζ, η, σC , ρ}. We assume that the parameters depend on a vector of observables

Xi,t, which could include demographic variables, social distancing metrics, or the amount of

testing:

g(θi,t) = g(θi) + κ′θXi,t (4)

g(θi) ∼ N (µθ, ω
2
θ), (5)

5We also estimated a model that replaces the exponent of 2 on the second term in (2) with a freely
estimated parameter. We fix the exponent because it is not well-identified separately from ζ.
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where the function g is chosen to map the appropriate support of θ to the real line:

g(θ) =


θ supp(θ) = (−∞,∞)

log(θ) supp(θ) = (0,∞)

log( 1
1−θ − 1) supp(θ) = (0, 1)

.

The model (4) assumes that time variation in the parameters within a state can arise

only through time-varying predictors but does not allow for exogenous time variation in

parameters. We allow for differences across states through the fixed effect θi. The joint

distribution of parameters across states is determined by the hyperparameters µθ and ωθ,

which we estimate.

2.1.2 Number of Deaths

In addition to modeling infections, we also consider the mortality rate. Not all infections are

fatal, and an observed death is the outcome of a process that can vary over time. We thus

assume that the number of deaths on any given day depends on the lagged number of cases,

but allow the data to determine the rate at which infections translate to deaths at different

horizons and which lags are most important.

In particular, we consider an extension of the spike-and-slab regression for the number

of new deaths ∆Di,t as a function of lagged new cases ∆Ci,t−`:

∆Di,t =
1∑
` ιi,`

L∑
`=1

ιi,`λ(λi,`, δ;Xi,t−`)∆Ci,t−` + εDi,t (6)

εDi,t ∼ N (0,
1∑
` ιi,`

L∑
`=1

ιi,`∆Ci,t−` × (σDi )2), (7)

where ιi,` ∼ Bernoulli(p`) is a variable selection indicator. In the absence of shocks, the setup

nests a deterministic SIR model, in which infections lead to deaths at a Poisson rate, and the

values of λ will fall geometrically with ` at the recovery rate. We provide greater flexibility

by allowing the coefficient λ to vary freely across lags. In addition, we include shocks whose

variance scales with the number of lagged cases. The scaling captures the trade-off between

a lower variance due to a larger number of cases over which to average and a higher variance

due to a larger number of expected deaths.

The variable selection parameter ιi,` shrinks small coefficients to zero, which can improve

forecast precision since there are a large number of coefficients relative to observations. On

one hand, the parameter L is relatively large because COVID-19 patients who do not survive
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the illness have a relatively long lag time between testing positive for the virus and dying.

On the other hand, COVID-19 is a recent disease for which we have a relatively short panel

of data. By making p` depend on `, the model assumes that lags, which are more important

for predicting mortality in one state, are likely important for other states as well.

The death rate λ roughly captures the fraction of infected individuals who die after a

given number of days.6 It depends on a state- and window-specific parameter λi,` and a

coefficient δ that determines the dependence of death rate on the predictors Xi,t−`. For

instance, the death rate likely decreases with the extensiveness of testing, as more mild and

asymptomatic cases are documented. Here we consider the functional form:

λ(λi,`, δ;Xi,t−`) = λi,`(1 + δ′Xi,t−`). (8)

To allow the death rates to be correlated across states, we specify:

(σDi )−2 ∼ Γ(aσ, bσ) (9)

λi,` | ιi,` = 1 ∼ N (µλ, (σ
D
i )2/υ), (10)

where (aσ, bσ, µλ, υ) are hyperparameters to be estimated.

2.2 Discussion of Model Features

Endogenous Time Variation in Parameters. A key feature of our model is the en-

dogenous time variation in parameters. In most models, any time variation in parameters is

exogenous. In contrast, we assume that the model-implied path of the pandemic can only

change if the observables Xi,t fluctuate. While the time variation in parameters offers the

flexibility to track a wide range of trajectories for infections and deaths, the endogeneity of

the time variation adds discipline to these fluctuations.7 By restricting the parameters to

only vary with observable data, we also rely more on the functional form in (2) to fit the

data and produce accurate forecasts.

In addition, we are able to estimate how different observables change the path for infec-

tions and deaths. This allows us to compute counterfactual trajectories for the pandemic

that condition on different paths for Xi,t. A more common approach in the literaure to

estimate the effect of observables has been to estimate a TVP model with exogenous time

variation, then to assess the correlation of the smoothed parameters with observables as a

6This is exactly true if the number of new cases is independent across days and ιi,` = 1 for all `.
7This is similar in spirit to the literature on endogenous Markov regime-switching, for instance, Diebold

and Lee (1994); Chang et al. (2017). However, in our model, the observables drive the actual parameter
values rather than the probability of moving between regimes.
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second step (e.g. Arroyo Marioli et al. (2020); Buckman et al. (2020); Dandekar and Bar-

bastathis (2020)). Our approach estimates the effect of the observables jointly with the rest

of the model, allowing for coherent quantification for both point estimates and posterior

uncertainty.

Panel Structure. Rather than estimate the model state-by-state, we consider a panel

model in which the parameters are correlated across states. This is designed to tighten

estimates for states that are in the early stages of transmission, since their state-specific

parameter estimates are informed by the data for states that are further along in the pan-

demic. The panel structure also aids in the estimation of κθ and δ. Since these parameters

are common across states, our panel estimates leverage the state-level heterogeneity in Xi,t,

yielding tighter estimates of the effect of these predictors.

Statistical Model. Our models for infections and deaths are both statistical, unlike a

majority of models that are variants of the SIR model (see, for instance, Table 1 in the

Appendix for the list that we compare our forecasts against). Our model’s relative flexibility

allows us to fit the data well despite the restrictions we place on the time variation in

parameters. Nevertheless, the minimal structure that the model imposes on the rise and fall

in the number of cases helps generate tighter long-run forecasts.

3 Data and Estimation

3.1 Data

We use publicly available data on the daily number of reported COVID-19 cases and deaths

in the 50 U.S. states and Washington, D.C. from The New York Times8 from January 21,

2020 through August 11, 2020. For each state, we start the sample when the state has a

cumulative number of cases of at least 20. The data set collects the cumulative number of

infections at the end of each day reported by local government and health authorities.

We also use two predictors for the variation in the parameters: the Mobility and En-

gagement Index (MEI), constructed by the Federal Reserve Bank of Dallas from January 3,

2020 through August 8, 2020, and positive test rates from The Atlantic’s Covid Tracking

Project from March 1, 2020 through August 8, 2020. We allow the parameters of the model

of infections to depend on both the MEI and testing, and allow the parameters of the model

8For full details, refer to the associated GitHub repository.
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for deaths to depend on positive test rates only. See Figure 9 in the Appendix for the time

paths of these predictors.

The MEI summarizes the deviation from normal mobility behavior since the start of the

COVID-19 outbreak. The index is formed using principal components on seven variables

measured using geolocation data from 16 to 20 million mobile devices. Each variable is a

measure of how much individuals travel away from home, and the index is normalized so

that a higher value corresponds to greater mobility (i.e., less social distancing).9 We take a

seven-day lagged moving average to smooth out seasonal fluctuations. While all states show

a common pattern of declining mobility in March followed by an increase in mobility from

the second half of April, there is heterogeneity across states in how much and how quickly

mobility changed at different points of the pandemic cycle.

We define the positive test rate as the total number of reported cases over the past seven

days divided by the total number of tests conducted over the past seven days. A lower

positive test rate is an indication of more extensive testing. As reporting errors occasionally

lead to a positive test rate that is negative or greater than one, we truncate the positive

test rate to be within the [0, 1] interval. While the positive test rate for the U.S. declined

in aggregate as states increased their testing capacities in March and April, the path for the

positive test rates has differed greatly across states.

In what follows, we estimate the model using data through August 8, 2020, when our

samples for the MEI and testing data end. We also estimate the model using data through

every other Sunday from May 3, 2020 through June 14, 2020, and check the performance

of our forecasts at a horizon of 1 to 28 days. This covers the period during which states

were reopening and until the point when many states experienced a second wave of sharp

increases in case numbers. Finally, we also take forecasts using data through July 15, 2020,

in order to show how the estimates update around the peak of the second wave.

3.2 Estimation

We draw from the posterior of the model for the number of infections using the following

Gibbs sampler:

1. Condition on θ1:N .

(a) Draw (µθ, ω
2
θ) from a normal-inverse-gamma distribution.

(b) Draw κθ using Metropolis-Hastings.

9See Atkinson et al. (2020) for details on the construction and comparison with other measures of social
distancing.
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2. Draw θ1:N | κθ using Metropolis-Hastings.

Step 1(a) is standard and uses the property that the normal-inverse-gamma distribution

is a conjugate prior (see, for instance, Zellner (1971)). Step 1(b) requires computing the

likelihood contribution from equation (1) for the entire panel. Step 2 can be done state-

by-state, similar to the estimation of the baseline model without time-varying parameters.

Hence, Step 2 could also be parallelized if a researcher wanted to use our model on a larger

set of locations.

To draw from the posterior of the model for mortality, we make use of the spike-and-slab

structure. In particular, we take the following steps:

1. Conditional on µλ, υ, aσ, bσ, p`,

(a) Conditional on δ,

i. Draw ιi,` state-by-state using Metropolis-Hastings.

ii. Draw λi,`, σ
D
i | ιi,` from a normal-inverse-gamma distribution.

(b) Draw δ | ιi,`, λi,`, σDi using Metropolis-Hastings.

2. Draw µλ, υ | λi,`, σDi from a normal-inverse-gamma distribution.

3. Draw aσ, bσ | σDi using Metropolis-Hastings.

4. Draw p` | ιi,` using the conjugate form of the beta prior.

Step 1(a)(i) uses the fact that a normal-inverse-gamma distribution is a conjugate prior for

a linear regression. In particular, for a given i, we can compute the marginal likelihood for

equation (6) given a candidate draw {ιi,`}L`=1, integrating out λi,` and σDi . Given ιi,`, we

have a standard regression for Step 1(a)(ii). Conditional on (ιi,`, λi,`, σ
D
i ), we can draw δ

using Metropolis-Hastings, since the likelihood is straightforward to compute. In Step 2,

it is straightforward to draw (µλ, υ) from a normal-inverse-gamma distribution, since λi,` is

distributed according to a generalized least squares regression on a constant, in which the

standard deviations of the shocks are known to be σDi . In Step 4, we utilize the fact that

the beta distribution is the conjugate prior for a binomial distribution. We pick L = 35,

allowing the number of deaths to depend on the number of new cases over a month ago. The

spike-and-slab structure allows the data to determine which lags are most important.
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3.3 Prior

For the model for number of cases, we consider a relatively uninformative normal-inverse-

gamma conjugate prior for the hyperparameters (µθ, ω
2
θ) for θ ∈ {γ, α, ζ, η, σC , ρ}:

ω−2
θ ∼ Γ(1, 0.25)

µθ | ωθ ∼ N (0, ω2
θ).

In addition, we impose a Gaussian prior for κθ for θ ∈ {γ, α, ζ, η, σC , ρ}:

κθ ∼ N (0, 0.52V −1),

where V is a diagonal matrix with the sample variances of each corresponding predictor Xi,t.

The prior thus represents the belief that each predictor contributes equally to the variance

of the transformed parameters g(θi,t).

For the model of mortality, we similarly impose a Gaussian prior for δ:

δ ∼ N (0, 0.52V −1)

to match the prior on κθ. For the variance σDi of the shocks, we use the prior:

aσ ∼ Γ(2, 1)

bσ ∼ Γ(2, 3× 10−7),

which is calibrated to the scale of the number of deaths. In particular, scale parameter for bσ

of 3×10−7 is chosen so that the mode of the prior is approximately the average state-specific

variance of the number of new deaths divided by the square root of the number of new cases,
1
N

∑
i V̂i
[
∆Di,t/

√
∆Ci,t

]
. The shape parameters of 2 for aσ and bσ are chosen to make the

prior relatively uninformative. For the distribution of λi,`, we use the prior

υ ∼ Γ(1, 10−3)

µλ | υ ∼ N (0, (0.052 × 10−3)/υ).

The prior for ν is chosen to be relatively flat and is scaled such that the standard deviation

of a state-lag-specific coefficient λi,` is of order 10−2. The conditional variance of µλ is scaled
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by 10−3 to account for the scale of ν. Finally, we consider the prior

p` ∼ Uniform(0, 1)

for the probability of including a lag.

3.4 Forecasting

To forecast the number of cases and deaths in each state, we need to condition on a path

for the time-varying predictors. To that end, we estimate an AR(1) model independently

for each predictor in each state using the last 14 days of data. If the absolute value of

the predictor is declining, we assume a long-run mean of zero. If the absolute value of the

predictor is increasing, we assume the long-run mean is the maximum value of the absolute

value of that predictor in the full sample. We extrapolate from the last data point using this

AR(1) model without shocks. The path we condition on captures the general trend of the

predictor in the most recent data.

4 Results

We present two sets of empirical results. We first discuss the parameter estimates of the

panel, whereby we give an overview of the results from the 50 U.S. states and D.C. We then

show how these parameter estimates depend on measures of social distancing and testing.

In the next step, we check the forecast performance of the model, whereby we focus on three

large states that have exhibited different patterns for the evolution of the pandemic.

4.1 Parameter Estimates

We first discuss the parameter estimates based on data through August 8, 2020.

4.1.1 State-Specific Parameters

Figure 2 shows the marginal posterior distributions from the infections model for both the

state-specific components of γ, α, ζ, η, σC , and ρ, as defined in equation (4), and the

aggregate distribution from equation (5). A large amount of heterogeneity across states is

required to match the wide range of trajectories across states even after accounting for the

MEI and positive test rates. Nevertheless, the posteriors for the aggregate distributions of

γ, α, η, and σC are substantially tighter than their priors, and the data are informative as

indicated by the shifts of the posteriors.
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Figure 2: Marginal posteriors for γ, α, ζ, η, σC , and ρ. Thin gray lines: posteriors for
each state; Thick red line: aggregate distribution across states.

For the mortality model, we define λi,` ≡ λ(λi,`, δ;
1
T

∑T
t=1Xi,t−`) and plot the posterior

means of ιi,` and λi,` | ιi,` = 1 in Figure 3. The former is the probability of including a lag,

while the latter captures the average death rate in a state for a given lag. We also plot the

mean of these parameters across states on the same axes. Both parameters show a clear

weekly seasonal component, potentially reflecting measurement error due to different rates

of processing test results or documenting deaths over the week. Nevertheless, the degree of

seasonality differs greatly across states.

The posterior estimates for the mortality model also indicate that the number of deaths

on a given day depends on the number of new cases up to five weeks prior. While there is

a decreasing trend in the estimates for ιi,` as ` increases, the data favors including cases at

long lags to predict future deaths. For instance, the mean estimate for ` = 35 is 0.07, which

is roughly half the mean estimate for ` = 1. The estimates for λi,` | ιi,` = 1 show a small

upward trend. In terms of magnitude, the average posterior estimates of λi,` | ιi,` = 1 across

states lie between 0.01 and 0.04 across lags, corresponding to the typical range of death rates

reported for the U.S.. These estimates reflect the relatively long lag time between infection

and death.

Notably, the lag time between infection and death stands in contrast with the assumption

of Poisson death and recovery rates in standard SIR models. This assumption is generally

made for modeling convenience. However, our coefficient estimates do not appear to be

generated from a Poisson structure. Specifically, the fatality and recovery rates used in the
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Figure 3: Posterior mean estimates for ιi,` and λi,` | ιi,` = 1. Gray dots correspond to
posterior means for individual states. Red crosses indicate average across states.

recent COVID literature range between 0.2% - 1.4% and 1/4 - 1/14, respectively.10 An OLS

regression, in which the numbers of cases are independent across lags, would likely show

the regression coefficients decaying rapidly. Intuitively, the spike-and-slab regression likely

inherits a similar structure both for ιi,` and λi,` | ιi,` = 1. The long lag between infection

and death is further evidenced from the recent second wave of cases in the U.S., as the rise

in cases was not followed by a corresponding increase in the number of deaths until several

weeks later.

4.1.2 Dependence of Parameters on Social Distancing and Testing

Our estimates show that differences in the MEI and positive test rates are associated with

significant variation in the model parameters. In particular, Figure 4 shows that the pa-

rameters in both the models for cases and deaths are significantly connected to the MEI

and the positive test rate through (4) and (8). These correlations are statistical and do not

10Atkeson et al. (2020) provides an overview and use baseline fatality and recovery rates of 0.5% and 1/5,
respectively.
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Figure 4: Marginal posteriors for dependence κθ and δ of parameters on predictors. Blue
dashed line: social distancing; Red dotted line: amount of testing.

identify causality. In general, one would expect a greater level of social distancing when cases

increase (e.g. Glaeser et al. (2020)) due to an endogenous response from both households

and governments. On the other hand, a higher number of cases mechanically increases the

positive test rate if the number of tests remains constant.

In order to give a sense of how the parameter estimates in Figure 4 for κγ, κα, κζ , and κη

map into the behavior of the nonlinear model, we compare the model-implied path of new

cases under baseline paths for the MEI and positive test rate against alternative paths with

more social distancing or testing in Figure 5. The respective paths of the MEI follow the

typical path in the data: it decreases in the first 60 days, then increases and levels off below

the initial level of zero. For testing, we consider constant positive test rates 0.1 and 0.2. To

show how social distancing and testing can affect the model-implied paths differently across

states, we consider the model-implied paths under the median parameter estimates using

New York and Texas as examples. In particular, we initialize the number of cases at 10−4%

of the population, then simulate the model forward without shocks.

Social distancing and testing can be associated with a lower number of infections, but

this relationship depends on the underlying trajectory of cases. Under the Texas parameter

estimates, both a lower MEI and a lower positive test rate are associated with flatter curves.

In contrast, under the New York parameter estimates, the model-implied trajectories remain

relative unchanged for different MEI and positive test rates. These differences arise because

of the different trajectories that New York and Texas faced: New York had a relatively rapid

rise and fall in the number of cases, whereas in Texas infections increased only gradually at

first. Under the baseline paths for the MEI and positive test rate, the number of new cases
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Figure 5: Model-implied paths of cases for different levels of social distancing and testing,
using posterior median for (γ, α, ζ, η) for New York and Texas and posterior median for κθ.
Gray solid line: baseline; Blue dashed line: increased social distancing (lower MEI);
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under the New York parameters falls to around 70% of its peak level by the 60-day mark,

while the number of new cases under the Texas parameters continues to rise. Our result

that the underlying trajectory of cases matters is consistent with Atkeson et al. (2020), who

use an estimated SIR model to show that the effects of distancing measures depend on the

precise scenario considered.

The MEI and the positive test rate are also associated with variation in the variance

and persistence of the shock uCi,t in (1). Lower levels of social distancing are associated with

shocks of higher variance and higher persistence, while lower levels of testing coincide with

shocks of higher variance and lower persistence. Reduced social distancing likely leads to

more clusters developing and could cause any temporary spikes in cases to last longer. On

the other hand, lower levels of testing can also result in more measurement error.

The estimate of δ, the dependence of the death rate on the positive test rate, shows

that a higher positive test rate is associated with a substantially higher death rate. At the

posterior mean for the average death rate µλ of 0.006, an increase in the positive test rate

of 10 percentage points corresponds to an increase in death rate of 2 percentage points.

Intuitively, a higher positive test rate occurs when individuals who are tested tend to have
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a higher ex-ante probability of being infected. These individuals tend to have more severe

symptoms, leading to a higher reported death rate.

4.2 Forecasts

We now assess the forecast performance of our model. This is a critical aspect of our analysis

since the global pandemic is still ongoing with no end in sight. Moreover, the course of the

pandemic in the U.S. has proven to be very volatile and heterogeneous across the states as

reported above. The most recent aggregate U.S. data even show the appearance of a second

peak in infections. The ability to forecast well in this changing environment is a key aspect

for an empirical epidemiological model that our panel framework with endogenous TVP is

designed to accomplish.

To check the forecast performance of our model, we estimate the model using an initial

subsample of the data and compare the model forecasts to the actual realizations. We do

this every two weeks from May 3, 2020 to June 14, 2020, covering the period during which

the aggregate number of cases in the U.S. was declining after the initial peak until the sharp

spike in cases leading to the second peak. During this time, states reopened at different

rates, and the number of cases and deaths across states followed a wide range of paths. The

heterogeneity across states provides a test for whether our model is sufficiently flexible to

match the numerous possible paths for the pandemic.

4.2.1 Coverage

Figure 6 shows Q-Q plots to compare the empirical realizations to the quantiles for our

forecasts of new cases and new deaths at the 1- to 28-day horizon. In particular, for each

horizon, we check the fraction of states whose realized number of new cases or deaths fall

below the qth quantile of our forecast for that state. We also average over each week to

remove any weekly seasonality, by counting the fraction of state-horizon observations that

fall below the respective qth quantile of our forecasts.

Overall, our forecasts match the realized data well. For new cases, the posterior quantiles

of our forecasts match the empirical frequency closely, except for the forecasts from June

14, 2020. This coincides with the sharp spike in cases in numerous states. In many cases,

our model predicts a rise in cases, but one that is smaller than the eventual spike. One

likely reason for the underprediction is that we tie the time-variation in parameters solely

to the time-variation in the MEI and positive test rates. The forecasts may be improved by

the inclusion of more variables, including more detailed mobility measures or disaggregated

data. Nevertheless, later forecasts from July 15, 2020 indicate that the parameter estimates
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Figure 6: Q-Q plots for forecasts of increase in number of cases and deaths one to 28 days
ahead, comparison with other models. Translucent markers: fraction of states whose
realized number of new cases or deaths falls below given quantile of forecast for a specific
horizon; Opaque outline markers: average over each week. Marker colors and shapes
indicate week of forecast.
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were updated in response to the new inflow of data. Figures 10 shows that the 95% error

bands of the corresponding forecast largely contain the realized data in late July and early

August.

The forecasts for new deaths match the empirical frequencies well at the upper quantiles,

but tend to undershoot slightly at the lower quantiles. The undershooting arises largely

among states that have many days without deaths. This occurs more regularly in the early

part of the sample and in states with a low number of cases. Indeed, by June 14, 2020, the

forecasts undershoot less as the zeros no longer bias the forecasts downward as much.

Figure 7 compares the forecast performance of our model to the forecasts compiled by

the COVID-19 Forecast Hub, which collects forecasts from leading teams of epidemiologists

and statisticians that are curated to ensure overall accuracy. As the repository primarily

provides forecasts for the number of deaths, we focus our assessment on cumulative and new

deaths. Since many models only update their forecasts once a week on Sunday or Monday,

we compare our forecasts taken on Sunday to any forecasts in the COVID-19 Forecast Hub

from the same day or one day later. We plot these competing forecasts on the same Q-Q

plot as our forecasts for the one- to four-week horizon.

Our model performs relatively well compared with alternative models at the horizons and

dates considered.11 This is notable given that the competing models include both statistical

and richly specified theoretical SIR models, many estimated using more data than we have

used. Table 1 in the Appendix provides further details on these models.

4.2.2 New York, California, and Texas

For further insight into how the model forecasts adapt to the data, we plot expanding window

forecasts for New York, California, and Texas in Figure 8. We focus on these three states

not only because they have among the largest populations in the U.S., but also because

the epidemic progressed differently in each, thereby providing a template for assessing the

forecasts in the other states. We plot forecasts from May 17, June 14, and July 15, 2020.

These correspond roughly to the decline in cases after the initial wave, the increase in cases

moving into the second wave, and the peak of the second wave. While all three states have

been severely affected by the COVID-19 pandemic, they have displayed different paths for

the number of cases, number of deaths, social distancing, and testing. The model forecasts

reflect these differences.

11Since we check the forecasts against the New York Times data, the relative performance may be at-
tributed partly to differences in the data used by different models. However, to fully explain the wide
dispersion in performance across models, one would require implausibly large and systematic differences
across data sets.
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Figure 7: Q-Q plots for forecasts of cumulative and new deaths one to four weeks ahead,
comparison with other models. Opaque outline markers: fraction of states whose realized
number of new or cumulative deaths falls below given quantile of forecast from this paper
at given horizons; Translucent markers: forecasts from other models on same date or one
day later for same horizon. Marker colors and shapes indicate horizon.
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New York. While New York was one of the hardest hit states during the early part of the

pandemic, the number of cases has steadily decreased since the first half of April. By May,

the number of cases was significantly lower than its peak. This is the typical path of cases

predicted by standard SIR models, and our model is able to fit this path well. In particular,

the model forecasts match the realized gradual decline in number of cases and deaths, with

the realized data falling within or close to the 95% error bands, which are relatively tight.

California. The number of cases in California plateaued in April, began to increase in

May, and accelerated in June before beginning to stabilize at the end of July. The model

forecasts qualitatively match these patterns. In May, we forecast a relatively stable number

of cases up till September at least. The data fall mostly within the 95% error bands until

mid-June when the increase in number of cases begins to accelerate. When we forecast

the number of cases from mid-June, the model predicts a possible rise in cases for several

weeks, albeit a smaller one than what actually occurs in the second half of June. Finally,

even though the number of cases continued to rise through the first half of July, the model

forecasts a plateau in the number of cases between mid-July and early September. The data

in the second half of July corroborate this forecast, as the number of cases has fluctuated

around the upper half of the 95% error bands.

The forecasts for the number of deaths mirrors those for the number of cases, except for

the mid-July forecast. In particular, the model predicts an increase in the number of daily

new deaths. This prediction is borne out by the data, with the number of deaths rising in

late July even as the number of new cases began to decline. This reflects the result that the

number of new deaths depends on the number of new cases up to five weeks prior.

Texas. The data and forecasts for Texas are qualitatively similar to California. In mid-

July, the model forecasts slightly faster growth in the number of cases in Texas than in

California. However, there is substantial uncertainty about the rate of this increase, as the

error bands are about twice as wide than those of the June forecast. The realized data in

the second half of July show a slight decrease that is comfortably within the error bands.

While the patterns of cases in California and Texas were relatively similar, the positive test

rate during the first half of July increased more rapidly in Texas than in California. The

forecasts for the two states thus condition on different projected paths for testing, leading

to the contrasting predicted trends in new cases.
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5 Conclusion

We develop and estimate a statistical model of the COVID-19 pandemic that has three key

features. First, parameters are allowed to vary over time, but only in line with observable

variables. Second, the model has a panel structure that sharpens estimates and forecasts.

Third, the underlying functional forms for the model are flexible and able to track the typical

paths of cases and deaths in a pandemic. The model’s forecasts perform favorably relative

to alternative epidemiological and statistical models.

By allowing parameters to depend on social distancing and testing, our estimates high-

light the interaction between these predictors and underlying state-specific parameters in

generating model predictions. Specifically, while both increased social distancing and more

intensive testing can be associated with lower case numbers, this does not occur when the

peak in a locality is relatively early and followed immediately by a sharp decline. In addition,

we estimate a decline in death rates associated with a lower positive test rate, accounting

for the different composition of cases reported as testing becomes more widely available.

Our functional form captures the trajectory of cases as well as connection between in-

fections and deaths that motivate SIR models. However, our statistical approach minimizes

modeling assumptions relative to the structural SIR literature, providing estimates that can

help inform the calibration or specification of these models. The autoregressive structure of

our setup is akin to time series econometric models and is conducive to forecasting. At the

same time, we introduce a panel structure to leverage the variation across states and time

that microeconometric methods often rely on. The Bayesian estimation transparently quan-

tifies parameter and forecast uncertainty. Our framework thus bridges a range of approaches

to provide insights into the evolution of this global pandemic.
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A Additional Figures and Tables
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Figure 9: MEI and positive test rate for all U.S. states.
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Figure 10a: Forecasts (95% error bands) for daily new cases in U.S. states, using data through
May 17, June 14, July 15, and August 8, 2020.
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Figure 10b: Forecasts (95% error bands) for daily new cases in U.S. states, using data
through May 17, June 14, July 15, and August 8, 2020.
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Figure 11a: Forecasts (95% error bands) for daily new deaths in U.S. states, using data
through May 17, June 14, July 15, and August 8, 2020.
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Figure 11b: Forecasts (95% error bands) for daily new deaths in U.S. states, using data
through May 17, June 14, July 15, and August 8, 2020.
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