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1 The Model

The general model takes the following form:

max Et

1X
t=0

�t
NX
j=1

 
C1��jt � 1
1� �

�  Ljt

!
subject to

Cjt +

NX
i=1

Mjit +

NX
i=1

Xjit = Yjt;

Kjt+1 = Zjt + (1� �)Kjt; (1)

Zjt = �
N
i=1X

�ij
ijt ;

NX
i=1

�ij = 1 (2)

Yjt = AjtK
�j
jt �

N
i=1M

ij
ijt L

1��j��Ni=1ij
jt :

In each sector j, the production of �nal goods takes place using as materials the amountMijt

of output produced in sector i. In addition, investment goods in sector j, Zjt, are produced

using the amount Xijt of output produced in sector i.

An input-output matrix for this economy is an N � N matrix � with typical element,

ij, the share of sector i in the output of sector j. A sectoral investment matrix is an N �N
matrix � with typical element, �ij, the share of sector i in total investment made by sector

j.

The �rst-order necessary conditions are:

Cjt : C��jt = �jt;

Ljt :  = �jt
Yjt
Ljt

 
1� �j �

NX
i=1

ij

!

Combining these 2 equations gives

Ljt :  Ljt = C��jt Yjt

 
1� �j �

NX
i=1

ij

!
: (3)

Mijt : �it = �jtij
Yjt
Mijt

;

or

Mijt : C
��
it = C��jt ij

Yjt
Mijt

: (4)

Xijt : �it = �jt�ij
Zjt
Xijt

; (5)
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where �jt is the Lagrange multiplier associated with the capital accumulation equation in

sector j, equation (1).

Kjt+1 : �jt = ��jt+1�j

�
Yjt+1
Kjt+1

�
+ ��jt+1(1� �): (6)

Thus, the basic equations of the model, equations (3) through (6) along with the capital

accumulation equation and the 2 production functions, represent a set of 6N+2N2 equations,

where 6N + 2N2 = 28080 when N = 117. For this reason, it is helpful to reduce the system

analytically if possible.

2 Finding the Steady State Analytically

Some key steady state equations are:

 Lj = �j

 
1� �j �

NX
i=1

ij

!
Yj; (7)

Mij =
�j
�i
ijYj; (8)

Xij =
�j
�i
�ijZj; (9)

Zj = �Kj; (10)

�j

�
1� �(1� �)

��j

�
= �j

�
Yj
Kj

�
; (11)

Zj = �Ni=1X
�ij
ij ; (12)

Yj = AjK
�j
j �

N
i=1M

ij
ij L

1��j��Ni=1ij
j (13)

Let y denote the log of variable Y . Further, let z = (z1; :::; zN)T , l = (l1; :::; lN)T , etc.,

m = (m11;m12; :::;m1N ;m21;m22; :::;mNN)
T and x = (x11; x12; :::; x1N ; x21; x22; :::; xNN)

T .

Using this notation, we can write equation (9) as follows,

xij = ln�j � ln�i + ln �ij + zj;

or, in vector form,

x =M� ln��Mx� ln�+Mzz + vec
�
ln�T

�
; (14)

where M� =Mz = 1N�1 
 IN and Mx� = IN 
 1N�1. Equation (12) implies that

z = e�x; (15)
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where

e�N�N2 =

26666664
�11 0 ::: �21 0 ::: �N1 0 :::

0 �12 0 ::: �22 0 ::: �N2 0

�13 �23 �N3

::: ::: :::

�1N 0 ::: �2N �NN

37777775 :

Substituting equation (14) into (15) gives

z = e�M� ln�� e�Mx� ln�+ e�Mzz + e�vec �ln�T � ;
or

(IN � e�Mz)| {z }
?

z = e�M� ln�� e�Mx� ln�+ e�vec �ln�T � ;
where

e�M� =

266664
P

i �i1 P
i �i2

::: P
i �iN

377775 � IN ;

and

e�Mx� =

266664
�11 �21 ::: �N1

�12 �22 ::: �N2

:::

�1N �2N ::: �NN

377775 = �T ;
so that

ln� = �T ln�� e�vec �ln�T � : (16)

From the Euler equation in the steady state (11), we have

ln�+ ln

�
1� �(1� �)

��

�
= ln�+ y � k

or

k = ln�� ln�+ y � ln
�
1� �(1� �)

��

�
;

where � is a vector with values �j and the expression in square brackets is understood to be

an element by element operation. Substituting equation (16) into this last equation gives

k = ln���T ln�+ e�vec �ln�T �+ y � ln
�
1� �(1� �)

��

�
or

k = (IN ��T ) ln�+ y + Ck; (17)
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where

Ck = e�vec �ln�T �� ln �1� �(1� �)

��

�
:

From the labor supply equation (7), we have

l = � ln + ln�+ y + lnCl; (18)

where

Cl = �� 1N�1;

� = (IN � �d � �);

where �d is a diagonal matrix with the values �j on the diagonal, and

� �

266664
P

i i1 P
i i2

::: P
i iN

377775 :
From the materials equation (8), we have

mij = ln�j � ln�i + ln ij + yj;

or, in vector form,

m =Mm� ln�+Myy + vec(ln �T ); (19)

where Mm� = 1N�1 
 IN � IN 
 1N�1 and My = 1N�1 
 IN .

We are now ready to solve for the multipliers, �, in closed form as functions the structural

parameters of the model only. From the de�nition of sectoral production (13), we have

y = a+ �dk + e�m+ �l;
where

e�N�N2 =

26666664
11 0 ::: 21 0 ::: N1 0 :::

0 12 0 ::: 22 0 ::: N2 0

13 23 N3

::: ::: :::

1N 0 ::: 2N NN

37777775 :

Substituting equations (17), (18), and (19) in this last expression gives

y = a+ �d[(IN ��T ) ln�+ y + Ck]

+e�[Mm� ln�+Myy + vec(ln �T )]

+�[� ln + ln�+ y + lnCl]
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or

[I � �d � e�My � �]| {z }
?

y = a+ �dCk + e�vec(ln �T )� � ln + � lnCl
+(�d(IN ��T ) + e�Mm� + �) ln�

so that

ln� = �(�d(IN ��T ) + e�Mm� + �)
�1[a+ �dCk + e�vec(ln �T )� � ln + � lnCl]; (20)

and � = eln�. This allows us to directly solve for consumption, C = ��
1
� . We can also solve

for � using equation (16),

ln� = �T ln�� e�vec �ln�T � :
To solve for output in the steady state, we �rst use the resource constraint,

��
1
� +MmyY +MxzZ = Y; (21)

where

Mmy =

266664
11 12

�2
�1

::: 1N
�N
�1

21
�1
�2

22 ::: 2N
�N
�2

::: :::

N1
�1
�N

N2
�2
�N

::: NN

377775 and Mxz =

266664
�11

�1
�1

�12
�2
�1

::: �1N
�N
�1

�21
�1
�2

�22
�2
�2

::: �2N
�N
�2

::: :::

�N1
�1
�N

�N2
�2
�N

::: �NN
�N
�N

377775 :
Now, Z = �K and from (17),

K = e(IN��
T ) ln�+y+Ck =

266664
Cexp1 0 ::: 0

0 Cexp2 ::: 0

::: :::

0 0 ::: CexpN

377775
| {z }

C exp

Y;

where Cexpi is the i
th element of the vector e(IN��

T ) ln�+Ck and ln� is given by (20). Substi-

tuting these expressions into (21) gives

��
1
� +MmyY + �MxzCexpY = Y;

so that

Y = (I �Mmy � �MxzCexp)
�1 ��

1
� : (22)

From here, solving for the remaining variables in the steady state is straightforward.
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3 Dynamics of the System

The model solution is described by a set of 6N + 2N2 equations. The following sections

describe these equations and outlines an analytical system reduction to 2N equations. The

basic equations of the system are:

 Ljt = C��jt Yjt

 
1� �j �

NX
i=1

ij

!
;

C��it = C��jt ij
Yjt
Mijt

;

�it = �jt�ij
Zjt
Xijt

;

where �it = C��it .

�jt = ��jt+1�

�
Yjt+1
Kjt+1

�
+ ��jt+1(1� �);

Cjt +
NX
i=1

Mjit +
NX
i=1

Xjit = Yjt;

Kjt+1 = Zjt + (1� �)Kjt;

Zjt = �
N
i=1X

�ij
ijt ;

NX
i=1

�ij = 1;

Yjt = AjtK
�j
jt �

N
i=1M

ij
ijt L

1����Ni=1ij
jt :

4 Log-linearized Equations

The �hat�notation stands for percent deviation from steady state.

bLjt = �� bCjt + bYjt;
�� bCit = �� bCjt + bYjt � cMijtb�it = b�jt + bZjt � bXijt

b�jt = e�b�jt+1 + e� bYjt+1 � e� bKjt+1 + �(1� �)b�jt+1;
where e� = 1� �(1� �);

SCj
bCjt + NX

i=1

SMji
cMjit +

NX
i=1

SXji
bXjit = bYjt;
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bKjt+1 = � bZjt + (1� �) bKjt;

bZjt = NX
i=1

�ij bXijt;

bYjt = bAjt + �j bKjt +
NX
i=1

ijcMijt +

 
1� �j �

NX
i=1

ij

! bLjt:
Let zt = ( bZ1t; :::; bZNt)T , lt = (bL1t; :::; bLNt)T , etc., mt = (cM11t;cM12t; :::;cM1Nt;cM21t;cM22t;

:::;cMNNt)
T and xt = ( bX11t; bX12t; :::; bX1Nt; bX21t; bX22t; :::; bXNNt)

T . Given this notation, we can

express the log-linearized equations as follows:

lt = ��ct + yt; (23)

mt =Myyt +Mcct; (24)

where My = 1N�1 
 IN and Mc = �(IN 
 1N�1)� �(1N�1 
 IN).

xt =M��t �Mx��t +Mzzt; (25)

where M� =Mz = 1N�1 
 IN and Mx� = IN 
 1N�1.

�t = e��t+1 + e�yt+1 � e�kt+1 + �(1� �)�t+1; (26)

where the Et(:) operator is understood to apply to the forward variables.

Scct + Smmt + Sxxt = yt; (27)

where

Sc =

264 SC1

:::

SCN

375 ; Sm =
264 SM11 SM12 ::: 0 ::: 0

:::

0 ::: 0 ::: SMN;N�1 SMN;N

375 ;

and Sx =

264 SX11 SX12 ::: 0 ::: 0

:::

0 ::: 0 ::: SXN;N�1 SXN;N

375 :
kt+1 = �zt + (1� �)kt; (28)

zt = e�xt; (29)

where e� is de�ned as in section 2.
yt = at + �dkt + e�mt + �lt; (30)

where e� and � are de�ned as in section 2.
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5 System Reduction

The objective of this section is to reduce the system of 6N + 2N2 log-linear equations

described in the previous section to one with a set of N �ows (consumption), N states,

(capital), and N driving processes (productivity).

Substitute equation (25) into (29) to get

zt = e�M��t � e�Mx��t + e�Mzzt;

or e�M��t = e�Mx��t;

(since I � e�Mz = 0) which gives alternatively

�t = �
T�t; (31)

(since e�M� = IN and e�Mx� = �
T ).

Now, substitute equation (31) into the linearized Euler equation, (26),

�T�t = e��t+1 + e�yt+1 � e�kt+1 + �(1� �)�T�t+1;

or

�T�t =
�e� + �(1� �)�T

�
�t+1 + e�yt+1 � e�kt+1:

Since �t = ��ct, this last expression becomes

���T ct = ��
�e� + �(1� �)�T

�
ct+1 + e�yt+1 � e�kt+1: (32)

From equations (23), (24), and (30), we have

(I � e�My � �)| {z }
�d

yt = at + �dkt + (e�Mc � ��)| {z }
Qc

ct

or, equivalently,

yt = ��1d at + kt + ��1d Qcct: (33)

Substitute this last expression into the Euler equation (32) to get

���T ct = ��
�e� + �(1� �)�T

�
ct+1 + e�[��1d at+1 + kt+1 + ��1d Qcct+1]� e�kt+1;

or

���T ct =
h
��
�e� + �(1� �)�T

�
+ e���1d Qc

i
ct+1 + e���1d at+1; (34)
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which is our �rst equation in a system that involves only consumption, capital, and the

exogenous shocks.

To obtain the second equation, we re-write the resource constraint,

Scct + Sm (Myyt +Mcct) + Sx (M��t �Mx��t +Mzzt) = yt: (35)

Recall that �t = �T�t in (31) so that M��t �Mx��t = (M��
T �Mx�)�t = ��(M��

T �
Mx�)ct. Moreover, from (28), we have zt =

kt+1
�
� (1��)

�
kt. It follows that (35) becomes

Scct + Sm (Myyt +Mcct)� �Sx(M��
T �Mx�)ct +

SxMz

�
kt+1 �

SxMz(1� �)

�
kt = yt;

or

(I � SmMy)yt =
�
Sc + SmMc � �Sx(M��

T �Mx�)
�
ct +

SxMz

�
kt+1 �

SxMz(1� �)

�
kt:

Recall that yt = ��1d at + kt + ��1d Qcct from (33). Therefore, we have

(I � SmMy)
�
��1d at + kt + ��1d Qcct

�
=

�
Sc + SmMc � �Sx(M��

T �Mx�)
�
ct +

SxMz

�
kt+1 �

SxMz(1� �)

�
kt

or

SxMz

�
kt+1

=
�
(I � SmMy)�

�1
d Qc � Sc � SmMc + �Sx(M��

T �Mx�)
�
ct

+

�
I � SmMy +

SxMz(1� �)

�

�
kt

+(I � SmMy)�
�1
d at; (36)

which is the second equation of our system.

We summarize equations (34) and (36) as follows:"
��
�e� + �(1� �)�T

�
+ e���1d Qc; 0

0; SxMz

�

#
Et

"
ct+1

kt+1

#

=

"
���T ; 0

(I � SmMy)�
�1
d Qc � Sc � SmMc + �Sx(M��

T �Mx�); I � SmMy +
SxMz(1��)

�

#"
ct

kt

#

+

"
0

(I � SmMy)�
�1
d

#
at +

"
�e���1d
0

#
Et(at+1): (37)

At this stage, the dynamics of the system can be solved using standard linear rational

expectations toolkits as described in Blanchard and Khan (1980), King, Plosser, Rebelo

(1998), and Klein (2000). Our calculations are based on the algorithms described in King

and Watson (2002).
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6 Solution and Policy Functions

The policy functions associated with (37) take the form:26666666664

c1t

:::

cNt

k1t

:::

kNt

37777777775
=

26666666664

:::

1 0 ::: 0 ::: 0

:::

0 ::: 1 0 ::: 0

37777777775

26666666664

k1t

:::

kNt

�1t

:::

�Nt

37777777775
;

264 a1t

:::

aNt

375
| {z }

xt

=

264 0 ::: 0 1 0 :::

::: :::

0 ::: 0 0 ::: 1

375

26666666664

k1t

:::

kNt

�1t

:::

�Nt

37777777775
;

and 26666666664

k1t+1

:::

kNt+1

�1t+1

:::

�Nt+1

37777777775
=

"
Mk Ma

0 I

#
26666666664

k1t

:::

kNt

�1t

:::

�Nt

37777777775
+H"t+1:

More generally, we can write these equations as follows:"
ct

kt

#
=

"
�ck �ca

I 0

#"
kt

�t

#
;

at =
h
0 Q

i " kt

�t

#
;

and "
kt+1

�t+1

#
=

"
Mk Ma

0 I

#"
kt

�t

#
+H"t:

7 Obtaining the Model Filter

Since we assume that the logarithm of sectoral productivity follows a random walk, Q = I

in the procedure governing the driving process (i.e. drp.gss) of King and Watson (2002).
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Therefore, we have

kt+1 =Mkkt +Maat;

and

ct = �ckkt +�caat:

Recall from equation (33) that

yt = ��1d at + kt + ��1d Qcct:

Therefore,

yt = ��1d at + kt + ��1d Qc[�ckkt +�caat]

= ��1d [I +Qc�ca]| {z }
�a

at + [I + ��1d Qc�ck]| {z }
�k

kt

so that

kt = �
�1
k yt � ��1k �aat:

Using these equations, we have that

yt+1 = �kkt+1 +�aat+1

= �k(Mkkt +Maat) + �aat+1

= �kMk(�
�1
k yt � ��1k �aat) + �kMaat +�aat+1

or

yt+1 = �kMk�
�1
k| {z }

%

yt +�k(Ma �Mk�
�1
k �a)| {z }

�

at +�aat+1:

Under the assumptions made in the paper regarding the process for at, it follows that

�yt+1 = %�yt + �"t +�a"t+1;

so that the �ltering is carried out according to

"t+1 = �
�1
a �yt+1 � ��1a %�yt � ��1a �"t. (38)

where "0 is set to zero. In order that the implied sectoral productivity growth rates be

stationary, the �ltering process (38) must satisfy the condition that the roots of jI ���1a �zj
lie outside the unit circle.

Let

�t+1 = �"t +�a"t+1;

Then, if var("t) = I,

��� = ��
0 +�a�

0
a:
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